...

Prof. Pradeep Kumar Das

PhD (National Institute of Technology Rourkela)

Assistant Professor Gr-II

Department of Electronics and Communication Engineering

Room No: 309 +91-870-246
pradeepkd@nitw.ac.in
7978500830 Edit Profile Bio Sketch

Research Areas

 Biomedical Signal Processing

 Computer Vision

 Deep Learning

 Image Processing

 Machine Learning

 Medical Image Processing

 Signal Processing

  • Courses Handled
  • Research IDs
  • Selected Publications
  • Project/Consultancy
  • Current PhD Students
  • Awards and Accolades
  • Additional Responsibilities
  • Linear IC Applications(EC251)
  • Design Thinking(EC1102)
  • Design Thinking(EC2102)
  • IC Application Lab(EC282)
  • IC Applications Lab(EC256)
  • ORC ID: 0000-0002-3125-771X
  • Google Scholar ID: https://scholar.google.com/citations?user=zETe7w4AAAAJ&hl=en


  • An Efficient Blood-Cell Segmentation for the Detection of Hematological Disorders, By P. K. Das, S. Meher, R. Panda, and A. Abraham, IEEE, IEEE Transactions on Cybernetics, vol.52, pp.10615-10626, 2022
  • AWOLSE: Adaptive Weight Optimized Level Set Evolution-based Blood Cell Segmentation, By P. K. Das and S. Meher, IEEE, IEEE Transactions on Instrumentation and Measurement, vol.73, pp.5003212, 2023
  • An Efficient Detection and Classification of Acute Leukemia using Transfer Learning and Orthogonal Softmax Layer-based Model, By P. K. Das, B. Sahoo, and S. Meher, IEEE, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.20, pp.1817-1828, 2023
  • A Hybrid Deep Learning Framework for Automatic Detection of Brain Tumours using Different Modalities, By A. Sahu, P. K. Das, I. Paul, and S. Meher, IEEE, IEEE Transactions on Emerging Topics in Computational Intelligence, vol., pp., 2024
  • A Systematic Review on Recent Advancements in Deep Learning and Mathematical Modeling for Efficient Detection of Glioblastoma, By M. Salman, P. K. Das, and S. Mohanty, IEEE, IEEE Transactions on Instrumentation and Measurement, vol.73, pp.1-34, 2024
  • A Review of Automated Methods for the Detection of Sickle Cell Disease, By P. K. Das, S. Meher, R. Panda, and A. Abraham, IEEE, IEEE Reviews in Biomedical Engineering, vol.13, pp.309-324, 2020
  • ACDSSNet: Atrous Convolution-based Deep Semantic Segmentation Network for Efficient Detection of Sickle Cell Anemia, By P. K. Das, A. Dash, and S. Meher, IEEE, IEEE Journal of Biomedical and Health Informatics, vol.28, pp.5676-5684, 2024
  • A Deforestation Detection Network Using Deep Learning-based Semantic Segmentation, By P. K. Das, A. Sahu, D. Xavy, and S. Meher, IEEE, IEEE Sensors Letters, vol.8, pp.1-4, 2024
  • SBCDNet: An Efficient Sparse-Based Deep Cascade Blood Cancer Detection Network, By P. K. Das, A. Sahu, D. V A, and S. Meher, IEEE, IEEE Sensors Letters, vol.8, pp.1-4, 2024
  • An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia, By P. K. Das and S. Meher, Elsevier, Expert Systems with Applications, vol.183, pp.115311, 2021

Artificial intelligence-based epileptic seizure detection framework using EEG signal

  • Role Co-Principal Investigator
  • Type Research
  • Sponsor Indian Council of Medical Research (ICMR)
  • Duration 35 Months
  • Project Cost (INR) 3010885
  • Status Ongoing